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Abstract

Our interest is in developing embodied cognitive systems. In the majority of work on cognitive
modeling, the focus is on generating models that can perform specific tasks in order to under-
stand specific reasoning processes. This approach has traditionally been exceptionally success-
ful at accomplishing its goal. The approach encounters limitations, however, when the
cognitive models are going to be used in an embodied way (e.g., on a robot). Namely, the mod-
els are too narrow to operate in the real world due to its unpredictability. In this paper, we
argue that one key way for cognitive agents to better operate in real-world environments is
to be able to identify and explain unexpected situations in the world; in other words, to per-
form explanatory reasoning. In this paper, we introduce a framework for explanatory reasoning
that describes a way for cognitive agents to achieve this capability.
Published by Elsevier B.V.
Introduction

Embodiment poses several significant challenges and oppor-
tunities for developers of cognitive agents. Typically, cogni-
tive models are of the form of process descriptions of highly
constrained experiment tasks. Chief among the challenges,
therefore, is to provide agents with the ability to handle
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inaccuracies in its model of the ever-changing, unpredict-
able world. A reliable embodied cognitive agent must be
able both to recognize when its model of the world is incor-
rect, and to explain the discrepancy in order to come up
with a new model that accommodates it; i.e., it must be
able to perform explanatory reasoning. Embodied cognition
also, however, affords extraordinary opportunities for
researchers in cognitive science. A prime example is the
ability to interact with the world to confirm or disconfirm
potential explanations of anomalies. While the above issues
can potentially be relevant to a variety of non-embodied sit-
uations, we believe they are especially pertinent to embod-
ied cognitive agents.

Consider the task of how a Navy firefighter puts out fires
on board a ship. The protocol of how to put out a fire is
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fairly well defined; for instance, these are the typical steps
to carry out for a two-agent team to successfully engage in
extinguishing a fire in a ship compartment (Navy, 1999,
chap. 555):

First, the leader checks the door to see whether it is hot.
Next, the leader opens the door and see what type of fire
it is, and tells the sprayer. Then, the leader and the
sprayer proceed into the compartment and fight the fire.

This procedure is a guideline, and it often suffices for most
situations. But human firefighters are not bound by the
guidelines, and if they detect something unexpected occur-
ring, they are likely to adapt the procedure to accommo-
date it. To illustrate, imagine that a firefighting team was
told that a fire was fairly moderate before entering an af-
fected compartment, but saw tongues of fire near the ceil-
ing and felt a rapid build-up of heat. These are two signs of
an impending flashover, a very dangerous situation where all
or most of the exposed combustible material in the com-
partment suddenly ignites. When firefighters see the two
signs of the flashover, therefore, they will likely depart
from the standard procedure and leave the compartment
immediately.

There are at least two major challenges to creating a ro-
botic cognitive system that can exhibit this type of flexibil-
ity. First, the robot must be able to create expectations of
how the world should behave, and detect when the world
violates those expectations (e.g., when its model of the
world is inaccurate). We refer to this step as inconsistency
detection. In the context of the above example, this means
that the robot should have an idea of how it expects the fire
to behave; i.e., as a relatively moderate fire typically does.
Then, it should notice that the fire is not behaving this way
and determine that is has found an inconsistency between
its model of the world, and the world itself.

Second, the robot must be able to explain what makes
this situation different, allowing it to utilize the explanation
when it decides what to do next. There are several potential
components to this step: (1) coming up with an idea of what
may be different (e.g., generating an alternate possible
model of the world); (2) elaborating on that idea (e.g., run-
ning a simulation with that model); and (3) checking
whether the idea explains the current situation (e.g., seeing
whether the new model accommodates the inconsistency).
We refer to these three steps, which may be used in various
combinations to explain inconsistencies, as explanatory
simulation. Returning to the above example, this means
that the robot should, for example, create an alternate
model where the fire is not at all moderate and a flashover
is imminent, realize that the model predicts that the robot
will see tongues of fire and feel a rapid build-up of heat, and
conclude that, since that model is consistent with what the
robot knows about the world, it explains what the robot is
seeing. Then, it can use its explanation to update its knowl-
edge and adjust its course of action to leave the compart-
ment immediately.

In this paper, we attempt to shed light on how these two
extraordinarily complex challenges can be tackled to create
cognitive agents that can elegantly handle the unexpected
events that unfailingly occur real-world situations. Our goal
in this paper is not to present an all-encompassing imple-
mentation; instead, we hope to outline and discuss the
ideas key to such a system. Along those lines, we compose
our discussion in the context of a framework of explanatory
reasoning that performs inconsistency detection and
explanatory simulation. While the tenets of this framework
are rooted in psychology, they are also underspecified and
can be implemented in numerous ways. Ultimately, we hope
that it helps to guide interested creators of embodied cog-
nitive systems in their quest to provide their agents with the
ability to perform explanatory reasoning.

In the next section, the paper begins by briefly reviewing
and discussing the extensive body of psychology research on
the various components of explanatory reasoning. Then, we
describe our framework of these cognitive mechanisms, and
highlight two working instantiations of the framework. Fi-
nally, we end with a general discussion of the framework.
The psychology of inconsistency detection and
explanatory simulation

The psychological background of inconsistency detection
and explanatory simulation is rich and complex, and has
been approached from a number of different angles. Here,
we discuss some of this work.

Detecting inconsistencies

When a person’s expectations conflict with their observa-
tions, it is relatively easy for them to detect that they have
comeacross an inconsistency; this happens on a regular basis,
for example, during scientific reasoning (Trickett, Trafton, &
Schunn, 2009). People also, however, can be notoriously bad
at detecting inconsistencies. One study by Otero and Kintsch
(1992) showed that adults systematically fail to detect incon-
sistencies in passages such as the following (p. 230, italics
added to highlight inconsistent sentences):

Superconductivity is the disappearance of resistance to
the flow of electric current. Until now it has only been
obtained by cooling certain materials to low tempera-
tures near absolute zero. That made its technical appli-
cations very difficult. Many laboratories are now trying to
produce superconducting alloys. Many materials with this
property, with immediate technical applicability, have
recently been discovered. Until now superconductivity
has been achieved by considerably increasing the tem-
perature of certain materials.

Upon investigation, the data revealed that individuals who
did not detect the inconsistency often either only recalled
one of the conflicting sentences, or recalled both but dis-
counted one of them by explaining the inconsistency away.
Other studies likewise found that people err systematically
in their ability to detect inconsistencies (Johnson-Laird,
Legrenzi, Girotto, & Legrenzi, 2000). These studies raise a
plethora of interesting questions about inconsistency detec-
tion; the major question is, of course, ‘‘What are the mech-
anisms that allow people to detect inconsistencies in the
world?’’

In an early study on inconsistency detection, Markman
(1979) gave children passages with logical inconsistencies
of two types: explicit, such as the door was both open
and not open; and implicit, such as the door was both open
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and closed. Markman’s goal was to examine the children’s
ability to detect inconsistencies in the text. She found that
children were more likely to notice explicit rather than im-
plicit inconsistencies. Up to the age of 12, the study showed
that children failed to detect some of what appeared to be
obvious implicit inconsistencies in the text, even though
they were able to recall the information presented, draw
deductive inferences from the text, and effectively query
the experimenter. Markman took these results to suggest
that to notice an inconsistency, children must carry out sev-
eral demanding tasks: (1) they have to encode the informa-
tion they read; (2) draw inferences from it; (3) maintain
these inferences in working memory; and (4) compare their
inferences with what they read. She concluded that the
complexity of this process is such that children under 12
do not often carry out these procedures. To us, this study
suggests that there is an explicit step to generating an
expectation of the world, corresponding to her step (2)
above, as well as an explicit step to using those expecta-
tions to detect inconsistencies, corresponding to her step
(4).

Several studies suggest also that the complexity of gen-
erating expectations is high, and reveal important factors
that help or hinder the ability to detect inconsistencies in
both children and adults. These factors include the type
of inconsistency (e.g., explicit falsehoods, or textual con-
tradictions) (Baker, 1985), the relative importance of the
inconsistency (Baker& Anderson, 1982;Glenberg, Wilkinson,
& Epstein, 1982; Vosniadu, Pearson, & Rogers, 1988; Zab-
rucky & Ratner, 1986, prior beliefs (Otero & Kintsch,
1992), and instructions given before the task (Markman,
1979; Markman & Gorin, 1981). While these studies shed
important light on the area of inconsistency detection, they
do not offer a specific mechanism for it.

One cognitive mechanism of inconsistency detection that
has been studied is based on the construction of mental
models (Johnson-Laird, Girotto, & Legrenzi, 2004). A men-
tal model is a set of entities, properties, and relations that
represent a situation of what the individual believes to be
true about the world. People appear to have difficulty main-
taining multiple models in working memory, and so they
tend to update their initial model with new information that
is learned. For example, suppose an agent is told: ‘‘all fires
in compartment A are easy to put out.’’ A mental model of
the assertion would represent a small number of fires, all of
which are tagged with the property of being easy to put out.
Fig. 1 shows a schematic example of such a model. Now, if
the agent were to learn something new such as ‘‘A fire in
compartment A is difficult to put out,’’ it would not be able
to integrate this information into its existing mental model,
Fig. 1 Example mental model, representing the assertion
‘‘all fires in compartment A are easy to put out.’’ Each line
represents a separate individual fire that is easy to put out.
since the new statement conflicts with the previous asser-
tion that all fires in compartment A are easy to put out.
The theory posits that when a combined model cannot be
constructed in this manner, people detect an inconsistency.
This manner of inconsistency detection predicts the errone-
ous inferences about consistency in the preceding para-
graphs (Johnson-Laird et al., 2000), as well as other errors
in reasoning about consistency (e.g., Legrenzi, Girotto, &
Johnson-Laird, 2003).
Explanations as mental simulations

Once an inconsistency is detected, psychological evidence
suggests that people next try to resolve them via explana-
tion (Khemlani & Johnson-Laird, 2012). The psychological
literature on how individuals create and judge explanations
is vast (see Keil, 2006; Lombrozo, 2006, for reviews); here,
we focus on research investigating explanations in response
to conflicting or inconsistent information (Johnson-Laird
et al., 2004; Khemlani & Johnson-Laird, 2011; Legare, Gel-
man, & Wellman, 2010). In these cases, there is strong evi-
dence indicating that people explain inconsistencies by
performing mental simulations to try to resolve the conflict
(Trickett & Trafton, 2007).

There is a broad base of psychological and cognitive re-
search supporting the idea of mental simulation, much of it
outside the realm of explanation (Barsalou, 1999). Some of
the earliest evidence on mental simulation comes from re-
search on the mental rotation of objects and figures. Early
studies began by showing that the time it takes to mentally
rotate an object is proportional to the degree of rotation
(Cooper& Shepard, 1973; Shepard, 1978; Shepard& Metzler,
1971), strongly suggesting that people were actually simulat-
ing the act of rotation in their mind; studies in neuroscience
also suggest this (Georgopoulos, Lurito, Petrides, Schwartz,
& Massey, 1989). Analogous effects occur when individuals
scan a mentally encoded two-dimensional map: they take
longer to estimate the distance between two places on the
map as the distance between those places increases (Kosslyn,
Ball, & Reiser, 1978), and they take longer to envision a jour-
ney of the map as the length of the journey increases (Bower
& Morrow, 1990). When individuals comprehend text and dis-
course, they likewise exhibit traces ofmental simulation pro-
cesses ( Kelter, Kaup, & Claus, 2004; van der Meer, Beyer,
Heinze, & Badel, 2002; Zwaan, 1996). For example, people
are slower to understand text when they need to simulate
a causal link between two sentences because one is not pro-
vided (Singer, Halldorson, Lear, & Andrusiak, 1992), and they
take longer to comprehend continual events than discrete
ones (Coll-Florit & Gennari, 2011).

One key study of using mental simulation for higher-level
reasoning was done by Trickett & Trafton (2007). They
showed strong evidence for a three-step process of hypo-
thetical, ‘‘what-if’’ reasoning in an in-vivo study of expert
scientists:

1. Generate a new representation of a system or
mechanism.

2. Transform that representation in a hypothetical
manner.

3. Look at the result of the simulation.



Fig. 2 A schematic diagram of the framework for explanatory reasoning. The agent’s episodic, declarative and procedural memory
systems (box (a)) take data from the external world and make sense of it. Based on this, they generate expectations (box (b)) and
represent observations of the world (box (c)) in a meaningful way. The expectations and observations can then be compared. If,
when combined, they yield a consistent model of the world, explanatory reasoning does not need to proceed further. If, however,
the system cannot reconcile its predictions with its observations, indicating that its model of the world is incorrect, it detects an
inconsistency (box (d)), and tasks explanatory simulation with trying to explain the inconsistency (box (e)). Once an explanation has
been found, the agent can act upon it as appropriate given its current task. It is worth it to add that memory is affected by every
other component in the diagram; for clarity, we omit the arrows designating that.

1 Others researchers sometimes use the term ‘‘semantic’’ mem-
ory here; we use ‘‘declarative’’ in order to be consistent with the
cognitive architecture we employ, ACT-R (see the section ‘Instan-
tiations of explanatory reasoning’).
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For example, an astronomer might say, while reasoning with
another astronomer:

In a perfect sort of spider diagram [Step 1].
If you looked at the velocity contours without any sort of
streaming motions, no, what I’m trying to say is, um, in
the absence of streaming motions [Step 2].
You’d probably expect these lines here [gestures] to go
all the way across, you know, the ring [Step 3].

The experimenters found that the scientists were most
likely to engage in this type of reasoning when they were
outside their own area of expertise, or on the boundary of
their current knowledge. Overall, this work shows one way
in which people use simulations to construct explanations
in complex domains.

An embodied framework of explanatory
reasoning

In this section, we describe our framework for explanatory
reasoning. A schematic diagram of the framework is given
in Fig. 2. It depicts the five main components present in
an agent with explanatory reasoning: (a) memory, or knowl-
edge, of its task, the world, etc.; (b) expectations derived
from its knowledge; (c) observations of the world, trans-
lated into a form that the agent understands; (d) inconsis-
tency detection given expectations and observations; and
(e) explanatory simulation. Our current focus is on parts
(b), (d) and (e); (a) and (c) we in large part leave to others,
for now.

Expectations and inconsistency detection

In our framework, expectations are made explicitly, as is
suggested by Markman (1979). There are many ways for an
agent to generate expectations based on its knowledge.
Here, in order to clearly discuss some of the ways to derive
expectations, we categorize knowledge into three types;
this classification, however, is not essential to our ap-
proach. Episodic memory describes the type of memory
used to remember personally experienced events and their
associated contexts, such as the time and place in which
they took place; for example, that the last time an agent
fought a fire in compartment A it was easily put out. Declar-
ative memory describes the memory system used to remem-
ber facts and general knowledge, such as the fact that a
class A fire means that only ordinary combustible material
is burning.1 Procedural memory, in turn, describes a system
for remembering how to do things, such as how to aim and
discharge a fire extinguisher. An agent’s model of the world
is a function of these memory systems, the specifics of
which depends on, among other things, the task at hand
and one’s theoretic perspective. With that caveat, for clar-
ity in this paper we will treat the agent’s world model sim-
ply as the interaction of these three memory systems.

Expectations are then built from the agent’s understand-
ing of the world. An agent can, for example, expect that a
current episode will unfold similarly to a previous one; for
example, the firefighting robot might expect that, since
the last fire in compartment A was easy to extinguish, the
next one will be, as well. Declarative memory can, and
should, also factor in. For example, if the robot knows that
a large tank of gas was recently moved into compartment A,
their expectation of the ease of fighting that fire should be
adjusted accordingly. Procedural knowledge, in turn, also
creates expectations rather fluidly: an agent can expect
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that the outcome of its actions is typically the same (e.g.,
each time they pull the trigger of their fire extinguisher,
it discharges); more interestingly, it can apply its own pro-
cedural knowledge to other agents in order to create expec-
tations of their behavior (e.g., if the agent itself leaves the
room when it suspects a flashover, it may expect that other
agents will, too).

Note that this approach implies that the complexity of
inconsistency detection is high. Computationally speaking,
generating expectations becomes intractable fairly quickly
if guidelines are not used to narrow the context of interest.
This is in line with the cognitive literature; see the section
‘Detecting inconsistencies’ for the discussion. To illustrate,
consider a scientist with a lot of knowledge about the world
(or, at least, about their area of expertise). Such an expert
could generate virtually a limitless number of expectations
of the world; and yet, they are typically able to generate in-
stead those which are most pertinent to the task at hand. It
is left up to the individual developer to address this issue in
a manner appropriate to their model.

Once an agent has an expectation, it can compare it to
its observations; again, this is in line with the results sug-
gested by Markman (1979). If an agent observes something
in the world that is consistent with its expectations, it can
safely integrate that observation into its memories to up-
date its model of the world, and can carry on with its duties.
Otherwise, it infers that its model of the world is inaccu-
rate, and begins to try to explain the inconsistency.

Explanatory simulation

Explanations are constructed by running simulations in a
cognitively-plausible, three-step process (see box (e) in
Fig. 2), akin to the simulation processes that humans go
through during hypothetical, ‘‘what-if’’ reasoning (Trickett
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& Trafton, 2007). First, an initial, alternative model of the
world is identified; one would envision that model to be
highly similar to the agent’s current model of the world,
but with differences (or a key difference) that may shed
light on the current inconsistency. For example, in our fire-
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explain the detected inconsistency (such as the above mod-
el, which explains the agents observations of fingers of fire
near the ceiling), it can be folded into the current agent’s
model and the agent can utilize the expectation as it sees
fit. Otherwise, this process can be repeated, ideally with
the failure of the previous simulation helping to shed light
on what a new, different, starting state should be.

It is worth noting that, if the agent has some other, eas-
ier way of generating the explanation, they should feel free
to use it. For example, if this exact situation has come up
before, the agent can potentially re-use the same explana-
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ideas that can be used to guide developing embodied
systems capable of explanatory reasoning irrespective of
differences in representation, implementation, domain,
platforms, etc. We demonstrate the framework’s generality
next, by describing two different ways of instantiating it.
Instantiations of explanatory reasoning

In this section, we describe two examples of explanatory
reasoning in the field of cognitive robotics, and show how
they represent different ways of instantiating our frame-
work. The embodied cognitive systems in our lab are built
on robotic platforms that come with various sensors for per-
ceiving the external world and various actuators for affect-
ing the world. We avoid a detailed discussion of our overall
robotic system, except to say that we use the cognitive
architecture known as ACT-R (Adaptive Character of
Thought-Rational) (Anderson et al., 2004) as the basis for
our robotic architecture. ACT-R is a hybrid symbolic/sub-
symbolic production-based system that consists of a number
of modules, buffers and a central pattern matcher. Specif-
ically, we use ACT-R’s embodied configuration, ACT-R/E
(Trafton & Harrison, 2011), which is used on robotic (and
simulated robotic) agents (Fig. 3). ACT-R/E interfaces with
world via the visual, aural, motor and vocal modules. Other
modules include the intentional, imaginal, temporal and
declarative modules.

The first example involves a robot who can perform the-
ory of mind (Hiatt, Harrison, & Trafton, 2011). The second
demonstrates a robot that can detect and explain episodic
inconsistencies in its interactions with people. These exam-
ples utilize the Mobile, Dexterous, Social (MDS) robot (Brea-
zeal et al., 2008) (Fig. 4), an expressive, humanoid robot
which was designed for human–robot interaction.
Fig. 4 The MDS robot.
Theory of mind

Theory of mind refers to the ability understand the beliefs,
desires and intensions of others. It is a hotly studied cognitive
ability, and in recent years, developmental psychologists
(Wellman, Cross, & Watson, 2001), cognitive neuroscientists
(Gallese & Goldman, 1998), and cognitive modelers (Fried-
lander & Franklin, 2008; Hiatt& Trafton,2010) have proposed
andmodeledmechanisms underlying theory ofmind. Hiatt et
al. (2011) describes an implemented cognitive robotic system
capable of carrying out theory of mind tasks, and the system
can be cast as a specific instantiation of the framework we
describe above. An example scenario is:

1. A robot is getting ready to go fight a fire.
2. Sunny walks up, and tells the robot that the fire in

compartment A is out but that there is a new, second-
ary fire in compartment B.

3. The robot acknowledges this, and Sunny heads to
compartment B.

4. Laura arrives and suggests that they head to compart-
ment A to fight the fire there.

5. The robot infers that Laura does not know that the
fire in compartment A is out, and tells her about it
and the new fire in compartment B.

6. Laura suggests that they head to compartment B, and
they both leave.

The robot’s behavior is achieved by first making an
expectation based on its knowledge of the world that Laura
will want to head to compartment B to fight the fire there.
Expectations are based on the default assumption that, gi-
ven the same model, humans will behave as the robot be-
haves; i.e., that Laura and the robot are ‘‘executing’’ the
same cognitive model. Thus, when Laura suggests heading
to compartment A, the robot detects an inconsistency since
it itself would head to compartment B at that time. Expla-
nations are generated by running simulations of separate
speculative cognitive models of the human, each of which
differs in its knowledge about the world. Ultimately, the ro-
bot identifies which model is most likely to lead to the hu-
man’s observed behavior, and uses that as the explanation
of the inconsistency; here, that Laura must not know about
Sunny’s recent update.

One of the noteworthy things about this model is the de-
gree to which it maintains cognitive plausibility. Simulation
during theory of mind, for example, has been supported by
various studies (Gallese & Goldman, 1998; Hiatt & Trafton,
2010). Furthermore, Hiatt et al. (2011) describe a human
subjects experiment that also supports cognitive plausibility.
In the experiment, participants were asked to rate a robot
with theory of mind, a robot that points out inconsistencies
but does not explain them, and a robot that neither notices
inconsistencies nor explains them. Participants found the
theory of mind robot to be both significantly more natural
and significantly more intelligent than the other two robots.

Detecting and explaining episodic inconsistencies

A second instantiation of our framework concerns a robot
whose job is to control entry to a secure area of a building.
The area is secured according to the following rule: only
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employees (defined as people who carry a blue identifica-
tion badge) are allowed to pass. Other persons, such as a
visitor (defined as a person who carries an orange identifica-
tion badge) are not allowed to pass unless they are escorted
by an employee. In this cognitive system, the robot is able
to remember typical episodes of interactions with people,
and detect and explain any inconsistencies between a rele-
vant typical episode and the current episode. Although ACT-
R does not have an explicit theory of episodic memory, here
we consider it to be part of its declarative memory system.
Consider the interaction below; here, Laura is an employee
who typically wears a blue badge:

1. Laura walks up to the robot; she is not wearing an
employee’s badge, but rather an orange visitor’s
badge.

2. The robot greets Laura, and processes the color of her
badge.

3. The robot hypothesizes that Laura forgot her normal
badge, and so she has to wear a temporary visitor’s
badge.

4. Laura confirms the explanation.
5. The robot denies Laura entry, since she is not

escorted by an employee with a blue badge.

Expectations are generated by retrieving relevant typical
episodes from declarative memory. Here, when the robot
sees Laura, it automatically accesses a typical episode of
interaction with Laura from memory, and uses it as its
expectation. Of course, since in this typical interaction
Laura is wearing a blue badge, the robot knows it is in an
anomalous situation. Explanations are then achieved by per-
forming simulation via backwards counterfactual chaining.
The simulation creates two chains of procedure sequences
in parallel: one with a starting state of the expected episode
of an interaction with Laura; the other, with a starting state
of the current episode. The robot searches backwards in a
chain by applying procedures in ‘‘reverse’’; for example, gi-
ven a starting state of Laura walking up to the robot wearing
her typical employee badge, the robot may apply a ‘‘re-
versed’’ procedure of Laura leaving for work to create a
new state of Laura getting into her car with her employee
badge. The robot does this for both chains to find the point
at which they intersect, and uses it as the basis of its expla-
nation. Here, the point of intersection (Laura getting ready
to go to work) is immediately followed by a procedure
where Laura remembers her badge (for the expected epi-
sode), versus a procedure where Laura forgets her badge
(for the current episode), allowing the robot to infer that
today, Laura forgot her badge.

This system is fully implemented and runs on our MDS ro-
botic platform. The system assumes that the robot has en-
ough knowledge of the world to perform explanatory
reasoning; this knowledge, however, is dynamic and as time
goes on the robot’s expectations of people, and explana-
tions of inconsistencies, will likely change.
General discussion

The systems we develop are cognitive models that operate
on robotic platforms, and so they need to be able to sense,
communicate with, and act on their environment. As we
stated in the very first paragraph of this paper, embodiment
is both a challenge and an opportunity. The reasons for its
difficulty are perhaps the more intuitive ones: the world,
and the agents in it, are unpredictable, and a cognitive
agent operating in it needs to be able to make sense of con-
flicting, uncertain, and incorrect information. In the con-
text of this paper, this means that embodied agents need
the ability to detect and explain inconsistencies in the
world.

So how can embodied agents cope with situations that
violate their expectations? We believe that the capability
of explanatory reasoning will allow them to do so. In this pa-
per, we have introduced a framework for explanatory rea-
soning. The framework is a way of characterizing the
classes of cognitive and computational mechanisms that
can be used to perform inconsistency detection and explan-
atory simulation. This framework is underspecified; it can
be instantiated to conduct many specific tasks, such as in
the two robotic systems we describe above. It posits that
agents construct expectations that are compared to obser-
vations in the external world. When an inconsistency is de-
tected, the framework explains the conflict via explanatory
simulation. Once an adequate explanation is constructed,
the agent is free to act on the explanation to seek more
information, change underlying beliefs, or adapt its behav-
ior, as it sees fit.

The second point, which we have largely glossed over
thus far, is that embodied, cognitively plausible systems of-
fer unique opportunities to researchers both in cognitive
science and robotics. To loosely borrow a term from biol-
ogy, we like to think of cognitive robotics as a symbiotic
relationship between cognitive scientists and roboticists,
where both parties could certainly survive apart, but both
can enjoy great benefits from living together. For cognitive
scientists, embodied cognitive models provide a new set of
tools to capitalize on to more fully understand human cog-
nition. Specifically, experiments involving cognitive models
are no longer limited to the stationary computer, and can,
in addition, utilize cognitive models that can act upon the
world.

Looking at this from a robotics point of view, cognitive
science provides robots with tools that allow them to better
interact with humans. The use of similar representations,
for instance, maximizes communicative fidelity because it
ensures that one agent can transfer a representation to an-
other agent without losing the relevant relationships that
make the representation informative (Kurup, Bignoli, Scally,
& Cassimatis, 2011; Kurup, Lebiere, Stentz, & Herbert,
2012). As another example, cognitive robots have been
shown to be better partners because they can capitalize
on the knowledge that cognitive models of their human
counterparts can provide them (Hiatt et al., 2011; Kennedy,
Bugajska, Harrison, & Trafton, 2009; Trafton et al., 2006).

Along those lines, although we have approached our
framework keeping cognitive plausibility at the forefront,
it is not strictly necessary to adopt our approach in a cogni-
tively plausible way. Certainly, each aspect of our approach
is deeply rooted in psychological literature, such as the use
of mental simulations to resolve inconsistencies. The spec-
ificities of a working instantiation of the framework,
however, are left to the developer and can be as psycholog-
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ically plausible or implausible as they desire. For example, a
researcher interested in cognitive plausibility may imple-
ment mental simulation in a cognitively plausible way, such
as by limiting it to piecemeal transformations as suggested
by Hegarty (1992, 2004); one less interested in plausibility
may decide to take advantage of a robot’s computational
power and use a full robotic simulation environment to per-
form its mental simulations. Both routes are productive in
their own way.

We end with a note about the framework’s generality.
Many of the key components of the framework are general
mechanisms, whose ideas can be applied to any number of
domains, architectures, robotic platforms, representations,
etc. We do expect that different implementations of simu-
lation, for example, will place additional constraints on it
(for example, an implementation of simulation for an
ACT-R cognitive model will look very different from an
implementation of simulation for the mental model theory),
but, at a high level, they will look the same. The same can
be said of comparing an expectation with an observation to
determine whether there is an inconsistency. In contrast,
we expect that how explanations are used will be very do-
main-dependent: for example, in the fire-fighting domain,
one may want to rush out of a compartment if a flashover
is considered a possible explanation; but in a different do-
main it may be appropriate for an agent to take steps to
confirm an explanation before reacting to it so drastically.
Such interactions between specific and general mechanisms
are extremely interesting, and we look forward to exploring
this area more.
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